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Proof of Regression Sum of Squares, Orthogonal Predictors and No
Intercept

The purpose of this document is to derive the regression sum of squares in a OLS setting, when

the predictors are orthogonal and there is no intercept included in the model. It was mentioned in the

paper “Orthogonal decomposition of interaction effect in analysis of variance” by Xiaofeng Steven Liu.

The exact sentence is “As the orthogonal coding is used, the regression sum of squares is the squared

regression coefficient times the sum of squared values of the orthogonal predictor.” What he failed to

mention is that this convenient representation of the regression sum of squares only holds if an intercept

is not included in the model.

Assume we have a standard linear regression setting with n (i = 1 . . . n) observations and p (j =

1 . . . p) predictors. Denote Y as our n × 1 response vector, X is our n × p design matrix, and β̂ =

(X ′X)−1X ′Y is our p × 1 vector of estimated regression coefficients. In our case, our design matrix

does not include a vector of 1’s for the intercept, and the predictors are also all orthogonal to one

another. Because of the orthogonal columns, (X ′X) is a diagonal matrix. Since we do not have an

intercept, we have our uncorrected total sum of squares (SST) as

SST =
n∑

i=1

y2i = Y
′
Y ,

where yi is the ith response in the vector Y . In the setting without an intercept, partitioning the total

sum of squares into a regression sum of squares (SSR) and an error sum of squares (SSE) can be less

straightforward than in the case with an intercept. In particular, the sum of squares due to regression

becomes less intuitive. We still define our SSE in the same way as with an intercept, that is,

SSE =
n∑

i=1

(yi − ŷi)
2 = (Y − Ŷ )

′
(Y − Ŷ ),

where Ŷ = Xβ̂ is our n× 1 vector of predicted responses.

So to get a formula for SSR, let’s subtract the SSE from the SST. Writing this in matrix form, we

Page 1 of 2



can solve for SSR = SST - SSE:

= Y
′
Y − (Y − Ŷ )

′
(Y − Ŷ )

= Y
′
Y − Y ′

Y + Ŷ ′Y + Y
′
Ŷ − Ŷ ′Ŷ

= β̂′X ′Y − Y ′Xβ̂ − β̂′X ′Xβ̂

= Y ′X(X ′X)−1X ′Y − Y ′XX(X ′X)−1X ′Y − Y ′X(X ′X)−1X ′X(X ′X)−1X ′Y

= Y ′X(X ′X)−1X ′Y − Y ′XX(X ′X)−1X ′Y − Y ′X(X ′X)−1X ′Y

= Y ′X(X ′X)−1X ′Y

= Y ′X(X ′X)−1(X ′X)(X ′X)−1X ′Y

= β̂′X ′Xβ̂

= β̂′X ′Xβ̂.

So as mentioned above, the orthogonal structure of the design matrix means X ′X is a diagonal matrix,

with the jth diagonal elements as
∑n

i=1 x
2
ij. So now, our matrix multiplication looks like:

=

[
β1 β2 . . . βp

]


∑n
i=1 x

2
i1 0 . . . 0

0
∑n

i=1 x
2
i2 . . . 0

0 0
. . . 0

0 0 . . .
∑n

i=1 xip2





β1

β2
...

βp


.

This yields our desired result that SSR =
∑p

j=1

(
β2
j

∑n
i=1 x

2
ij

)
. And more specifically, the sum of

squares due to any particular predictor can be represented as β2
j

∑n
i=1 x

2
ij.
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